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BIRDSHOT

BIRDSHOT

Batch-wise Improvement in Reduced MaterialsiBesign
Space using a Holistic OptimizationTechnique
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BRDSHOT LEADS

« Raymundo Arroyave, TAMU, (Alloy Design, Bayesian Materials
Discovery)

- George Pharr (NAE), TAMU (High Strain Rate Deformation, HSR,
HTP Nano-Indentation)

 Ned Thomas (NAE), TAMU (High Strain Rate Deformation, HSR,
HTP LIPIT)

 Surya Kalidindi, GTech, (Data-Driven Materials Design,
ML+Physics Models for Materials Behavior)

« Ken Vecchio, UCSD, (High-throughput Materials Synthesis)

* lbrahim Karaman, TAMU (Microstructure-Sensitive Materials
Design, HTP Materials Synthesis)

« Dimitris Lagoudas, TAMU, (Mechanics of Materials)

« Ankit Srivastava, TAMU (Microstructure Mechanics, HSR
Deformation Simulations, Bayesian Materials Discovery)

« Others: Douglas Allaire, TAMU (Multi-Disciplinary Systems Design
and Optimization)
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BIRDSHOT's VISION

Accelerated, Goal-Oriented Materials Discovery

BIRDSHOT

Batch-wise Improvement in Reduced Design
Space using a Holistic Optimization Technique
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BIRDSHOT CAPABILITIES PORTFOLIO

« ARMY+ARL Partners
o |dentify Army Requirements & Responsive R&D
* Inform and Collaborate in Research and Transitioning

« TAMU+GTECH+UCSD:

— Beyond SOA High-Throughput Synthesis of Advanced Army-relevant
Materials

— World-unique HTP Characterization of Materials’ Response under
EXTREME CONDITIONS

— Best-in Class Al/ML Enabled Materials Discovery/Design Frameworks
— Highly Intfegrated Multi-Scale Modeling Capabilities
— Efficient Integrated Center-wide Data Management Tools

« INDUSTRY PARTNERS:

e Provide Needed Core Competencies in Scale-up and
Commercialization

 Collaborate in Research
e Co-investin the Center
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The BIRDSHOT Way

BIRDSHOT

Batch-wise Improvement in Reduced Besign
Space using a Holistic Optimization Technique
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BIRDSHOT Approach:

— Step1: Filter Alloy/Materials
Space

— Step 2: HTP Synthesis

— Step 3: HTP Characterization
(Extreme Conditions)

— Step 4: HTP Simulations
— Step 5: Optimal Learning of
Physics of HSR Deformation

— Step 6: Deploy Multi-Information
Source Batch Bayesian
Opftimization
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HTP Screening (Arroyave)

(Step 1) Reduced Design Space

— Unique HTP capabilities for
efficiently fil’rermg? vast alloy
. spaces ahead o
| SPACE REDUCTION! U @ R ORVANCE FILTERS experimental/computational
- iInvestigation

— Capable of filtering millions of
alloys at once

BIRDSHOT

Batch-wise Improvement in Reduced Besign
Space using a Holistic Optimization Technique
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HTP Synthesis (Vecchio, Karaman)

* (Step 2) HTP Synthesis

Batch-wise Improvement in Reduced Besign . .
Space using a Holistic Qptimization Technique — Highly integrated, beyond SOA
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HTP Characterization

Pharr, Thomas

BIRDSHOT

Batch-wise Improvement in Reduced Besign
Space using a Holistic Optimization Technique
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» (Step 3) HTP Characterization

— HTP nano indentatfion at high-
strain rates and temperatures
(Pharr)

— HTP Laser Induced Particle Impact
Testing (LIPIT) (Thomas)

— Strain Rates: 103-108/s

— Other extreme conditions (i.e. high
temperature, oxidation, etc.)
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HTP Simulations (Srivastava)

- (Step 4) HTP Simulations

Batch-wise Improvement in Reduced Besign . .
Space using a Holistic Optimization Technique — Advanced simulations of HSR

& BLVSIEEEacED deformation of materials
- "ERFORMANCE FILTERS ) )
— ML-enabled Scale Bridging

A FILTERS FOR DESIGN
| SPACE REDUCTION

PHASE STABILITY.
PREDICTIONS
N o . '
ol A (CALPHAD)
BATCH-WISE »

IMPROVEMENT LOOP

@ Top performing alloys
from each iteration

/  Advanced
§ Characterizatiory
\ and Testing

Fundamental / R

Mechanistic {4y
Understanding \¥

Microstructure-based dynamic fracture simulations

- - - Spall plane ~
Increasing loading rate, K; Pat.pd V__

Structure/
property
-Performance
Correlations and
Maps

Dynamic

indeniation Ballistic simulations Spallation

Machine Le \ Transferable
Al-Enabled
Materials Design

Physics-Base
y Frameworks

Models



TEXAS A&M UNIVERSITY

Engineering

Optimal Learning

Texas A&M Engineering
Experiment Station

BIRDSHOT

Batch-wise Improvement in Reduced Besign
Space using a Holistic Optimization Technique
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(Srivastava, Kalidindi, Arroyave, Allaire)

« (Step 5) ML-Physics Coupled
Models

— Bayesian approaches for
accelerated learning of physics
of HSR deformation

— Enabled by Physics-Constrained
Fast-Acting ML Surrogate Models

Bayesian Learning
of Materials Physics

Physics-based

HSR
Models
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Bayesian Optimization

(Srivastava, Allaire, Arroyave)
- (Step 6) Bayesian

Batch-wise Improvement in Reduced Besign OpflmIZCIfIOI‘I
Space using a Holistic (_)ptimizﬁionlechnique _BO Copobili’ries:
A FILTERS FOR DESIGN “_ PHYSICS-BASED

| SPACE REDUCTION ~  ERFORMANCE FILTERS * Sparse datfa sets
' PHASE STABILITY. * Mulfi-Information Source
« Multi-Objective, Multi-Constraints

» Batch (to account for parallel
experiments)

* Microstructure Aware

Initial
Knowledge

T~

BATCH-WISE
IMPROVEMENT LOOP

Top performing alloys

from each iteration

/ Advanced '\
K\Characterization )

N\ andTesting

) Material with
yes /" desired property

Budget exhausted?

K/L‘mc:\amental yv/
echanistic (¢ ‘
Understanding \%

Chemistry

Structure/
property /
-Performance ¢

el

Surrogate
model(s)

Update
model(s)

[
R

Thase Sram

I-WP Exoerimernils

Machine Learning 4
and Data Enhanced 4
Physics-Based
Models

—

—=
) Materials Design Select next
Frameworks design point(s) ¢

-

HTP Simulations




TEXAS ASM UNIVERSITY ﬁ\? Texas A&M Engineering
Engineering B | Experiment Station

Workforce Development

Computational Materials
Science Summer School:

D3EM Program:

SIX DEPARTMENTS « THREE DISCIPLINES « ONE VISION

Building a collaborative framework for the accelerated development of
materials through materials science, informatics, and engineering design.

TRANSCEND DISCIPLINES LAUNCH SUCCESSFUL CAREERS IMPACT ENERGY

TECHNOLOGY & SYSTEMS
National
Labs

Materials
Science
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QOur Vision: An Autonomous Materials Researc

Development Platform

INTUITIVE CLOUD-BASED HUMAN-IN-THE-LOOP Al-BASED
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INTERFACES Dol R e SEVENT DISCOVERY CONTROL
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