High-Throughput Design and Analysis of Novel Ceramics for Ballistic Protection

Virtual Kick-off Meeting for ARL's High-Throughput Materials Discovery for Extreme Conditions Program

Alireza V. Amirkhizi (UML), Christopher Hansen(UML), Reza Abedi (UTSI/UTK), Farhad Pourkamali (UML/CUD)

July 12 and 13, 2022

Objectives

To leverage new directions in predictive modeling and adaptive learning

for accelerated computational analysis and design of materials in extreme conditions.

The proposed application is to utilize these approaches to

- (a) determine *quantitative features of failure* in novel ceramics and
- (b) design materials for enhanced ballistic performance, with the outlook to be additively manufactured.

Overall Technical Approach

- Foundational Research
 - 1. SVE Analysis
 - 2. Importance Sampling
 - 3. Uncertainty Aware Predictive Modeling
- Application Demonstrator
 - 4. Meso-scale Fracture Response
 - 5. 3D Printing of Ceramics
 - 6. Characterization

Application Demonstrator:
High Throughput Discovery of Novel Ceramics for Ballistics

Research Plan

Computational Mechanics

Problems with homogeneous deterministic models

Challenge 1: Maintaining sufficient inhomogeneity

O Erik Strack, RB Leavy, and Rebecca M Brannon. Aleatory uncertainty and scale effects in computational damage models for failure and fragmentation. International Journal for Numerical Methods in Engineering, 102(3-4):468–495, 2015

Tending to terminal value 1.3 More inhomogeneous 1.1

L.S. Dimas, T. Giesa, and M.J. Buehler. Coupled continuum and discrete analysis of random heterogeneous materials: Elasticity and fracture. Journal of the Mechanics and Physics of Solids, 63(1):481–490, 2014

Challenge 2: Sample-to-sample variations

A. Al-Ostaz and I. Jasiuk. Crack initiation and propagation in materials with randomly distributed holes. Engineering Fracture Mechanics, 58(5-6):395–420, 1997

J Kozicki and J Tejchman. Effect of aggregate structure on fracture process in concrete using 2D lattice model. Archives of Mechanics, 59(4-5):365–84, 2007

Variation in macroscopic Qols

Variation in fracture pattern

Related work: Homogenization using SVEs and Failure

mesoscopic properties depend on microstructure

(left) and used for fracture simulation (right)

Task 1: Use of SVEs to homogenize elasticity and strength at meso-scale

• Homogenize mesoscopic elastic and fracture properties using SVEs:

Different microstructures / SVEs

Mesoscopic elastic & fracture response is characterized

Accurate geometric modeling / (CISAMR) Soheil Soghrati (OSU)

Voronoi SVEs, Katherine Acton (UST)

Microcracks & other defects

ARL ballistic material
 3D printing capabilities
 will be integrated in
 this project plan.

Parameter	Range of Interest
Particle composition	1:0 A:B to 0:1 A:B
Organic binder or solvent	1:0 A:B to 0:1 A:B
Particle size distribution	1:0 A:B to 0.5:0.5 A:B
Particle volume fraction	50 to 70 vol%

Task 4: Macro-scale fracture using random fields of SVEdriven properties and SML

Macroscopic Fracture Simulations using asynchronous Spacetime Discontinuous Galerkin (aSDG)

"patch" of elements is solved

How to utilize Scientific Machine Learning (SML; Tasks 2 & 3): Substantial reduction of the number of forward simulations

•For many fragmentation analyses sufficient level of heterogeneities must be maintained in material properties:

$$a(\mathbf{x}, \omega) \approx \mathbb{E}[a](\mathbf{x}) + \sum_{i=1}^{n} \sqrt{\lambda_i} b_i(\mathbf{x}) Y_i(\omega)$$
 Random field is represented by n independent random variables Y_i

- •For realistic domain sizes, 10000s of KL terms may need to be maintained!
- •Importance sampling and active learning from Tasks 2, 3 is used to reduce the number of forward simulations.

Karhunen-Loever strength field

Uniform strength field

Scientific Machine Learning

Scientific Machine Learning

- Advantages
 - Build surrogate models to accelerate design/analysis of materials
 - Optimization, inverse problems, etc.

- Challenges
 - Generating data for training and testing
 - Expensive computational models, e.g., DNS
 - Incorporating various sources of uncertainty
 - Natural or physical randomness (aleatory)
 - Imperfect knowledge (epistemic)
 - Overlooking rare/extreme events: Failure

Heavy-tailed data in high-dimensional space

Overview of data science tasks

 Standard "big data" techniques are not appropriate for most scientific and design problems

 We propose a "data-centric" approach for handling of uncertainties in computational models

Tasks 2 and 3

- Task 2: Developing importance sampling strategies
 - Decomposing uncertainty sources in the design space to capture patterns in the output space
 - Guiding machine learning models using the underlying physics

- Task 3: Using multi-modal data for predictive modeling
 - Each uncertainty type viewed as a modality
 - Meso-scale aleatory uncertainty to be treated as epistemic in macro-scale
 - Overcoming the curse of dimensionality
 - Improved confidence intervals

Prior work on reducing the number of simulations

 Quantifying the impact of uncertainty in material properties and ground motion records on structural response

with Applications.

Compression ratio

Fabrication, Characterization, and Validation

3D Printing of Highly Filled Materials

Existing UML/ARL collaboration with E.J. Robinette, J. La Scala, I. McAninich, et al.

Ambient Reactive Extrusion (ARE) / Material Extrusion

In-Line Mixing for AM of Ceramics

ARL: N. Ku, L. Vargas-Gonzalez

UCSD: J. Pelz, M. Myers

Reservoir A

Reservoir B

Progressive cavity extruders

Pump viscosities > 10⁴ Pa-s

Pelz et al. ARL-TR-8851 2019

~50 vol% compositions printed by Direct Ink Writing

Application Demonstrator Task 5: 3D Printing Ceramics

Reactive 2-part thermoset with unimodal filler (up to 40 vol%)

Consider the following parameters, with exact numbers determined by importance sampling

Parameter	Range of Interest
Particle composition	1:0 A:B to 0:1 A:B
Organic binder or solvent	1:0 A:B to 0:1 A:B
Particle size distribution	1:0 A:B to 0.5:0.5 A:B
Particle volume fraction	50 to 70 vol%

Application Task 6: Characterization and Validation

Impact: HTMDEC Program Thrusts

Short term impact on

- Thrust 1 (Material Design) in areas
 - ii. Adaptive learning and
 - iv. Uncertainty quantification, and

 Thrust 4 (ML-augmented Physics-Based Models) in areas

- ii. Scale-bridging considerations, and
- iii. Training of ML models.

Long term, to expand results and methodology to address and gain insight in

- 1.iii. ML/AI driven designs,
- 4.i. Implementation of ML-augmented physics-based models,
- 4.v. Developing of an overarching methodology.

Application Demonstrator:
High Throughput Discovery of Novel Ceramics for Ballistics

Management, Roles, and Timeline

Ongoing

- Material Selection (UML to seek input from ARL; Tasks 1, 2, and 5)
- Computation SVE modeling (UTSI; Task 1)
- Importance sampling with uncertainty (CUD; Task 2)

Amirkhizi (PI, UML), Hansen (UML), Abedi (UTSI/UTK), Pourkamali (UML/CUD)

Planned

- Active learning (3)
- Fracture modeling (4)
- Fabrication (5)
- Characterization (6)

		Quarter 1	Quarter 2	Quarter 3	Quarter 4
-	Foundational Task 1: SVE-modeling of				
	elasticity and fracture QSPRs				
	Foundational Task 2: Importance sampling				
	with uncertainty				
	Foundational Task 3: Active learning for				
)	adaptive importance sampling				
•	Application Task 4: Macro-scale modeling for				
	failure QoIs				
	Application Task 5: Fabrication with variable				
	micro-structure				
	Application Task 6: Experimental verification				
	of QSPRs and QoIs				
	Application Task 6: Experimental verification				

Discussion on Collaboration

- Leverage ongoing collaboration with ARL on
 - 3D printing of Ceramics (T. Plaisted, A. Rosenberger, G. Gazonas, L. Vargas-Gonzales, et al.)
 - Ambient Reactive Extrusion (E. J. Robinette, J. La Scala, I. McAninich, et al.)
- Outreach to other seedling teams, in all thrust areas
- Data management

Ceramic Properties E = 300 Gpa $\rho = 3985 \text{ kg/m}^3$ $\nu = 0.27$ $T_{n,max} = 270 \text{ Mpa}$

