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Objectives

To leverage new directions in 
predictive modeling and adaptive learning

for accelerated computational analysis and design of materials in 
extreme conditions. 

The proposed application is to utilize these approaches to 
(a) determine quantitative features of failure in novel ceramics 
and 
(b) design materials for enhanced ballistic performance, with the 

outlook to be additively manufactured.
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Overall Technical Approach

• Foundational Research
1. SVE Analysis
2. Importance Sampling
3. Uncertainty Aware 

Predictive Modeling

• Application Demonstrator
4. Meso-scale Fracture 

Response
5. 3D Printing of Ceramics
6. Characterization
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Research Plan
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Computational 
Mechanics
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Problems with homogeneous deterministic models

L.S. Dimas, T. Giesa, and M.J. Buehler. Coupled 
continuum and discrete analysis of random 
heterogeneous materials: Elasticity and fracture. 
Journal of the Mechanics and Physics of Solids, 
63(1):481–490, 2014

O Erik Strack, RB Leavy, and Rebecca M 
Brannon. Aleatory uncertainty and scale 
effects in computational damage models for 
failure and fragmentation. International 
Journal for Numerical Methods in 
Engineering, 102(3-4):468–495, 2015

Challenge 1: Maintaining sufficient inhomogeneity

Challenge 2: Sample-to-sample variations

A. Al-Ostaz and I. Jasiuk. Crack initiation 
and propagation in materials with 
randomly distributed holes. Engineering 
Fracture Mechanics, 58(5-6):395–420, 
1997

Variation in fracture pattern Variation in macroscopic QoIs

J Kozicki and J Tejchman. Effect of aggregate 
structure on fracture process in concrete 
using 2D lattice model. Archives of 
Mechanics, 59(4-5):365–84, 2007
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Related work:
Homogenization using SVEs and Failure
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Task 1: Use of SVEs to homogenize elasticity and 
strength at meso-scale

• ARL ballistic material 
3D printing capabilities 
will be integrated in 
this project plan.

Pelz et al. (2019) ARL-TR-8851
Accurate geometric modeling  / 
(CISAMR) Soheil Soghrati (OSU) Voronoi SVEs, Katherine Acton (UST) Microcracks & other defects 

Different microstructures / SVEs
Mesoscopic elastic & 
fracture response is 
characterized

• Homogenize mesoscopic elastic and fracture properties using SVEs:

Parameter Range of Interest

Particle composition 1:0 A:B to 0:1 A:B

Organic binder or solvent 1:0 A:B to 0:1 A:B

Particle size distribution 1:0 A:B to 0.5:0.5 A:B

Particle volume fraction 50 to 70 vol%
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Task 4: Macro-scale fracture using random fields of SVE-
driven properties and SML

•For many fragmentation analyses sufficient level of heterogeneities must be 
maintained in material properties:

•For realistic domain sizes, 10000s of KL terms may need to be maintained!

•Importance sampling and active learning from Tasks 2, 3 is used to reduce the 
number of forward simulations.

Karhunen-Loever
strength field

Random field is represented by n
independent random variables Yi

Macroscopic Fracture Simulations using asynchronous Spacetime Discontinuous Galerkin (aSDG)

How to utilize Scientific Machine Learning (SML; Tasks 2 & 3):
Substantial reduction of the number of forward simulations Uniform 

strength field
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Scientific Machine 
Learning
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Scientific Machine Learning
• Advantages

• Build surrogate models to accelerate design/analysis of materials
• Optimization, inverse problems, etc.

• Challenges
• Generating data for training and testing

• Expensive computational models, e.g., DNS
• Incorporating various sources of uncertainty

• Natural or physical randomness (aleatory)
• Imperfect knowledge (epistemic)

• Overlooking rare/extreme events: Failure
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Overview of data science tasks 

• Standard "big data" techniques are not appropriate 
for most scientific and design problems

• We propose a "data-centric" approach for handling of 
uncertainties in computational models
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Tasks 2 and 3
• Task 2: Developing importance sampling 

strategies
• Decomposing uncertainty sources in the 

design space to capture patterns in the 
output space

• Guiding machine learning models using the 
underlying physics

• Task 3: Using multi-modal data for 
predictive modeling

• Each uncertainty type viewed as a modality
• Meso-scale aleatory uncertainty to be treated 

as epistemic in macro-scale
• Overcoming the curse of dimensionality
• Improved confidence intervals
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Prior work on reducing the number of simulations
• Quantifying the impact of uncertainty in material properties 

and ground motion records on structural response

output matrix (n1 X n2)
partial observations

Hariri-Ardebili, M. A., & Pourkamali-Anaraki, F. (2022). Structural 
uncertainty quantification with partial information. Expert Systems 
with Applications.

n2

n1 Y
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Fabrication, 
Characterization, and 

Validation
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3D Printing of Highly Filled Materials

Ambient Reactive Extrusion (ARE) / Material Extrusion

Reservoir A

Reservoir B

Existing UML/ARL collaboration with E.J. 
Robinette, J. La Scala, I. McAninich, et al.

Pump viscosities
> 104 Pa-s

Progressive 
cavity extruders

Pelz et al. ARL-TR-8851 2019

Boron 
carbide

Silicon 
carbide

~50 vol% compositions 
printed by Direct Ink Writing

ARL: N. Ku, L. Vargas-Gonzalez
UCSD: J. Pelz, M. Myers 

In-Line Mixing for AM of Ceramics

gradient
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Application Demonstrator Task 5: 3D Printing 
Ceramics

Parameter Range of Interest

Particle composition 1:0 A:B to 0:1 A:B

Organic binder or solvent 1:0 A:B to 0:1 A:B

Particle size distribution 1:0 A:B to 0.5:0.5 A:B

Particle volume fraction 50 to 70 vol%

Consider the following parameters, with exact 
numbers determined by importance sampling

row 1
row 2
row 3
row 4
row 5

printed
row n…

continuous gradient

Reactive 2-part thermoset with unimodal filler 
(up to 40 vol%) 

2X speed
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Application Task 6: Characterization and Validation
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Impact: HTMDEC Program Thrusts
Short term impact on
• Thrust 1 (Material Design) in areas 

• ii. Adaptive learning and 
• iv. Uncertainty quantification, and 

• Thrust 4 (ML-augmented Physics-Based 
Models) in areas 

• ii. Scale-bridging considerations, and 
• iii. Training of ML models. 

Long term, to expand results and 
methodology to address and gain insight 
in 

• 1.iii. ML/AI driven designs, 
• 4.i. Implementation of ML-augmented 

physics-based models, 
• 4.v. Developing of an overarching 

methodology.
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Management, Roles, and Timeline

• Ongoing
• Material Selection (UML to seek input from ARL; 

Tasks 1, 2, and 5)
• Computation SVE modeling (UTSI; Task 1)
• Importance sampling with uncertainty (CUD; 

Task 2)

• Planned
• Active learning (3)
• Fracture modeling (4)
• Fabrication (5)
• Characterization (6)

Quarter 1 Quarter 2 Quarter 3 Quarter 4
Foundational Task 1: SVE-modeling of 
elasticity and fracture QSPRs
Foundational Task 2: Importance sampling 
with uncertainty
Foundational Task 3: Active learning for 
adaptive importance sampling
Application Task 4: Macro-scale modeling for 
failure QoIs
Application Task 5: Fabrication with variable 
micro-structure
Application Task 6: Experimental verification 
of QSPRs and QoIs

Amirkhizi (PI, UML), Hansen (UML), Abedi (UTSI/UTK), 
Pourkamali (UML/CUD)
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Discussion on Collaboration
• Leverage ongoing collaboration 

with ARL on 
• 3D printing of Ceramics (T. Plaisted, 

A. Rosenberger, G. Gazonas, L. 
Vargas-Gonzales, et al.)

• Ambient Reactive Extrusion (E. J. 
Robinette, J. La Scala, I. McAninich, 
et al.)

• Outreach to other seedling teams, 
in all thrust areas

• Data management

Ceramic Properties
𝐸𝐸 = 300 Gpa

𝜌𝜌 = 3985 kg/m3

𝜈𝜈 = 0.27
Tn,max = 270 Mpa
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